Climate Change, Health and Sustainable Development

by
Christopher Cox PhD
Environmental Health and Sustainable Development Department
Caribbean Public Health Agency (CARPHA)

12th Meeting
Caribbean National Epidemiologists and Laboratory Directors
Hyatt Regency Trinidad
Port of Spain, Trinidad and Tobago
Areas of focus for environmental health and environmental management

• Water resources management
• Solid waste management
• Chemicals and hazardous substances management
• Air quality management
• Cross-cutting:
 • Climate change – impacts across many areas; for example:
 • Water security threatened – changing rainfall patterns means changing water availability
 • Accelerated spread of disease – influenced by temperature and moisture regimes
 • Ambient air quality changes – influenced by changes in regional and global rainfall/temperature regimes (eg sub-Saharan dust pulses)
Human and ecosystem health hazards

• **Human health**
 • Contact with contaminated waters (drinking, recreation)
 • Ear infections
 • Dysentery – Severe diarrhea
 • Typhoid Fever
 • Viral and Bacterial Gastroenteritis
 • Vector proliferation
 • Mosquito breeding
 • Dengue and Chikungunya virus
 • Rodent proliferation
 • Leptospirosis

• **Ecosystem health**
 • Terrestrial eco-toxicity – chemicals and hazardous substance accumulation in soils
 • Compromised reef systems
 • Hypoxic ‘dead’ zones in marine environments
Water resources management (water and sanitation)

- **Freshwater**
 - Drinking water supply/water scarcity (surface and ground water)
 - Food security – irrigated agriculture (typically surface sources)
 - Contact recreation (rivers, lakes)

- **Coastal waters**
 - Contact recreation (beaches)
 - Food security – fish stock health

- **Water safety** - Reduce hazards in water supply systems, from the water supply sources, through the distribution network and within the household.
 - Critical in disaster response; both drought and flood related
 - Close collaboration with ministry of health as the regulator and water utilities as the service providers

- **Recreational/coastal water quality** – reduce hazards from land-based sources of pollution.
 - Risks from unimproved sanitation, untreated effluent discharges, other pollutants
Water resources management (water and sanitation)

- **Primary country support needs - Pollution assessment and control**
 - Contribute to the development and adoption of best practices
 - Build capacity for water resources management
 - Deepen engagement of high level policy makers
 - Contribute to the development of national Integrated Water Resources Management (IWRM) Plans
 - Support the strengthening of policies and legislation
Solid waste management

- Pest and disease control
 - Rodent, insect (mosquitos) proliferation
- **Primary country support needs – waste minimization and diversion**
 - Innovation in waste diversion, reduction and re-use; recycling, waste-to-energy
 - Divert green/organic waste; safe disposals – reduce rodent populations
 - Reducing risk associated with indiscriminate plastics disposal and flood exacerbation (in watercourses) – invest in recycling
 - Reduce stockpiling of types, white waste – accumulation of water and breeding sites for mosquitoes – invest in recycling
 - Minimize leachate discharge and toxic impacts
 - Concern over hazardous chemicals and other substances in the wastestream
 - Support waste management policy design
 - Support to sustained advocacy and awareness-raising
Chemicals and hazardous substances management

• Chronic and acute exposure
 • Environment – ecotoxicity: accumulation of harmful substances within soils, water with indirect (longer-term) impacts
 • Human – direct impacts

• Primary country support needs – safe handling practices and chemicals life cycle management
 • Policy development and strengthening regulatory environment
 • Provide guidance to the establishment of poison centres
 • Support knowledge management for decision making
 • Strengthen management capacities amongst practitioners
 • Promote and support advocacy
 • Provide technical guidance for assessments and strengthen diagnostic capacities at national level
 • Support applied research
Air quality management

• Indoor environment
 • Respiratory, eye irritants - mould, dust, VOCs

• Outdoor/ambient
 • Sub-Saharan dust, other dust/particulates, smoke, exhaust emissions, odour nuisances

• **Primary country support needs – various**
 • Build capacity in air quality assessment amongst health professionals
 • Support the strengthening of local diagnostic capabilities
 • Assist in the formulation of policies, legislation and regulations
 • Support and participate in applied research
Linking epidemiological and environmental assessments

• Explain trends in disease occurrence
• Assist in directing and targeting interventions and investments based on health-based evidence – priority setting
• Serve to strengthen stakeholder engagement and buy-in to remediation
• Proposed:
 • Develop/harmonized data reporting protocol between epi data and environmental assessment
 • Share common database management system; attempt to build in the option of adding environmental parameters
• Typical examples where such linkages are needed:
 • Drinking water quality within water supply systems and occurrence/reports of diarrhea
 • Recreational water quality and occurrence/reports of infection amongst bathers (ear, eye, skin)
 • Community sanitation and prevalence of mosquito-borne disease
To illustrate - Typical environmental assessment

- Upstream-downstream pollutant loading of environmental hotspots (pollutant sources)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Upstream sample</th>
<th>Downstream sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterrocoeci</td>
<td>CFU/100 ml</td>
<td>960</td>
<td>6,700</td>
</tr>
<tr>
<td>Faecal Coliform</td>
<td>CFU/100 ml</td>
<td>22,000</td>
<td>380,000</td>
</tr>
<tr>
<td>Nitrates</td>
<td>mg/L</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Phosphate</td>
<td>mg/L</td>
<td>0.65</td>
<td>1.7</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>mg/L</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Oils and greases</td>
<td>mg/L</td>
<td>12.9</td>
<td>14.3</td>
</tr>
</tbody>
</table>

- Needed: an approach to link this data to human and ecosystem health in a structured manner. The two areas tend to remain isolated
Thank you, questions